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What are quirks?

“Quarks” confined under infra-color

mQ >> ΛIC 

No fragmantation! Why?
Flux tube energy 

over length L, > 2mQ

L

compton wavelength, 
L ~ (mQ )-1

ΛIC2L  > 2mQ

ΛIC2 >2mQ2

Infra-color strings can’t 
break! 

Infra-color flux tube

J. Kang and M. A. Luty, 
JHEP 0911, 065 (2009)
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Rich collider phenomenology

Produced in a highly 
excited state
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Figure 5: Calorimeter energy deposition in the toy detector simulation. The distribution is shown

for (a) bound state radiation with 100% of the energy released in photons, (b) bound state radiation

with 10% of the energy in photons and (c) a minimum bias event. Brighter squares indicate a higher

energy deposition in the cell, however, the scale itself is arbitrary for each figure separately.

in photons, the average amount of energy deposited in our toy calorimeter is approximately 550

GeV for a squirk mass of 500 GeV. For comparison, in the average (modified) min-bias event the

average was below a 100 GeV. Our modification of the min bias events (see section 4.1), which was

geared toward generating conservative backgrounds for pattern recognition (see below), may have

increased the later number, but it may be taken as a ballpark figure.

In this work we will focus on amore distinct “smoking gun” feature of our signal, the angular

“anntena” pattern of soft energy. Identifying this pattern provides a unique data analysis challenge

since most triggering and clustering algorithms are geared toward the identification of hard objects.

A promising way to quantify the angular correlations of any function defined on a 2-sphere is to use

a multipole decomposition, as was shown to be very effective in studies of the cosmic background
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R. Harnik, T. Wizansky, Phys. 
Rev. D80, 075015 (2009)

Very optimistic 
scenario

Ground state

|η|< 0.6
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Annihilation into 
observable high pT signals

 S. P. Martin, Phys. Rev. D83, 035019 (2011)

Vectorlike quirkonium annihilation studies

C. Kilic, T. Okui, JHEP 1004, 128 (2010)

K. Cheung, W. -Y. Keung, T. -C. Yuan, Nucl. Phys. B811, 274-287 (2009)

Not many chiral quirkonium decay studies in 
the market!

and so on........

R. Harnik, G. Kribs, A. Martin, arXiv:1106.2569 (2011)
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Physical motivation for chiral quirks
Kribs, Roy, Terning, Zurek, 
Phys. Rev. D81, 095001 
(2010)

SU(N)ic SU(2)L U(1)Y
Q N 2 0
uc

N̄ 1 −1/2
dc N̄ 1 +1/2

TABLE I: Quirk quantum numbers.

spinors U,D

U =

�
u
uc†

�
D =

�
d
dc†

�
(2)

where U,D have electric charge q = ±1/2. The quirky
mesons formed from these objects include

(UŪ), (DD̄) neutral mesons (3)

(UD̄), (DŪ) q = ±1 charged mesons . (4)

There are two interesting regions of parameter space
satisfying the requirement MU,D � Λic. One occurs
when MU � MD or MD � MU , such that there is
one set of heavy neutral mesons, one set of intermediate-
mass electrically charged mesons, and one of set of light
mesons. In this regime, the heavier mesons generically
weak decay to the lightest mesons (microscopically the
heavier quirks are weak decaying into the lighter quirks)
before the quirks themselves have time to annihilate. In
this regime, the relevant annihilation channels consist
solely of the lightest neutral mesons.

The second regime, and the main focus of this paper,
is when MU � MD. When the two flavors of quirks are
very nearly degenerate in mass, all of the mesons given
in Eqs. (3),(4) are stable against weak decay. All of the
quirk pairs within the mesons therefore annihilate well
before the kinematically-suppressed weak decay occurs.
This leads to four distinct “towers” of mesons: two sets
of neutral mesons and two sets of (oppositely) charged
mesons.

The neutral mesons (UŪ) and (DD̄) can mix with each
other through infragluon box diagrams that are superfi-
cially similar to the W -box diagrams within the SM that
lead to mixing among the neutral mesons of QCD. How-
ever, unlike QCD, all of the quirks are heavy, while the
gauge bosons being exchanged in the box diagram are
massless. This small mixing is an interesting effect for
further study. Our meson decay rates are invariant un-
der U ↔ D, and we simply compute (QQ̄) as if it were
an exact (UŪ) or (DD̄) eigenstate. In practice, there
may be either a small admixture between these states,
in which case the mixing angle cancels out in our width
calculations, or otherwise for maximal mixing, we treat
(QQ̄) as the [(UŪ) + (DD̄)]/

√
2 eigenstate.

The infracolor confining potential in the Coulombic ap-
proximation is [10]

V (r) = − ᾱic

r
, (5)

where ᾱic ≡ C2(N)αic = (N2 − 1)/(2N)αic. Analogous
to a hydrogen atom, the Schrödinger wave function can
be solved analytically. The decay widths we calculate
are proportional to the meson wavefunction when the
two constituent quirks overlap. The wavefunction fac-
tors that appear in the decay widths, for S and P states
respectively, are

|RS(0)|2 = 4

�
1

4
ᾱicM

�3

(6)

|R�
P (0)|2 =

1

24

�
1

4
ᾱicM

�5

, (7)

where M is the mass of the meson.

III. MATRIX ELEMENTS OF BOUND STATE

DECAYS

This section reviews the procedures to evaluate the
decay amplitudes of different angular momentum bound
states following the method in [20]. We work in the non-
relativistic limit, where the relative momentum of the
constituents, q � M , where M is the mass of the bound
state. We also ignore the contribution to the meson mass
from the binding potential, i.e. M = 2mQ, with mQ

being the mass of the individual quirks.

Calculations of the matrix element involving an incom-
ing bound state and an outgoing free state, �X|iT |B�,
are needed to evaluate different bound state decay rates.
This is most conveniently done by writing the bound
state as a superposition of free fermion states with spins
(s1, s2) and momenta (p1, p2):

|B� = |2s+1lj� =
�

MSz

�lmssz|jjz�|lmssz�

=

�
2

M

�
d3q

(2π)3
ψlm(q)

��

msz

�lmssz|jjz�
�
×

��

s1s2

�s1,
1

2
, s2,

1

2
|ssz�

�
|s1p1s2p2�, (8)

where ψ is the Schroedinger wavefunction of the bound
state. In its rest frame, p1 = Q/2+ q, and p2 = Q/2− q,
where Q is the 4-momentum of the meson, and q is
the relative 4-momentum of quirks. Then, the quan-
tity <X|iT |s1p1s2p2>= iv̄s2(p2)Mus1(p1) is the usual
fermion-antifermion annihilation matrix element into the
outgoing state f . Expanding the above to the lowest
non-vanishing order in q, we found the following decay
amplitudes for S and P states,

2

Quirky baryons can 
be a dark matter 

candidate

Chiral Quirkonium Decays

R. Fok1 and Graham D. Kribs2, 1

1
Department of Physics, University of Oregon, Eugene, OR 97403
2
Theoretical Physics Department, Fermilab, Batavia, IL 60510

We calculate the decay rates of “quirkonium” states formed from quirks that acquire mass solely

through electroweak symmetry breaking. We identify differences in decay rates of “chiral quirkonia”

versus “vector-like quirkonia”, which allow these theories to be experimentally distinguished. Our

focus is on one specific theory, SU(N)ic with two flavors transforming under a chiral representation

of the electroweak group, and Λic � mquirk.

I. INTRODUCTION

Quirks are fermions transforming under the SM gauge

group along with a new strongly-coupled “infracolor”

group SU(N)ic [1]. (Related ideas were also consid-

ered in Ref. [2].) The infracolor confinement scale, Λic,

is assumed to be much smaller than the masses of all

quirks. Since infracolor-string breaking rate is propor-

tional to exp(−m
2
Q/Λ

2
ic), the infracolor string does not

break. Quirk pairs remain in a bound state even when

they are produced with high kinetic energies. This leads

to several interesting collider physics and dark matter ap-

plications [1, 3–13]. (Other work on hidden valley models

can be found in [14–16].) Certain kinds of quirks have

already been searched for at the Tevatron by the D0 col-

laboration [17].

In this paper, we consider quirks that acquire their

mass through electroweak symmetry breaking. This is

unlike the original proposal [1], and was motivated in part

by the suggestion that asymmetric dark matter could

arise as baryons made up of chiral quirks [10]. We do

not, however, restrict ourselves to the specific theory

or detailed parameter choices of [10]. Moreover, unlike

Ref. [10], we are interested in the mesons of this theory,

specifically, their decay branching ratios. While our re-

sults are general for SU(N)ic, we illustrate our results

numerically for the specific choice N = 2, which is mo-

tivated both by Ref. [10] as well as minimizing the addi-

tional contributions to the electroweak precision observ-

ables. Nevertheless, our analytic results are applicable to

mesons in the S and P states for arbitrary N .

At this point we should emphasize that only some as-

pects of quirky physics can be calculated (or simulated)

with standard collider tools. In general, quirks can be

produced in a standard collider physics process (for us,

weak production), but then the pT of the quirks must

be shed before the quirks settle down into a low-angular-

momentum state. This “spin-down” (or “wanga-wanga”

[18]) process is in general non-perturbative, with the re-

sulting radiation dependent on the relative strengths of

infracolor and other couplings of the quirks. After spin-

down, the quirks annihilate, causing quirky mesons to

decay. It is solely this last step that is our interest in this

paper.

The annihilation rate of quirky mesons is proportional

to the lowest non-vanishing radial derivative of the meson

wavefunction at zero relative quirk displacement. This is

entirely analogous to positronium and quarkonium [19].

For an S state, this is |ψ(0)|2, while for a P state, |ψ�(0)|2.
At high orbital angular momentum L, this wavefunc-

tion factor is suppressed. Ref. [1] estimated the sup-

pression factor in the annihilation probability scaling as

(β/L)L+1
/L, where β is the quirk relative velocity and

L > 0. Therefore, instead of annihilating immediately,

the mesons will emit soft radiation to shed its angu-

lar momentum. The radiation may be in the form of

soft photons [5] that could be detected as rings in the

η − φ plane in colliders. Such signals provide a smoking

gun for discovery of quirks. As the quirky bound state

reaches a low angular momentum state (L ∼ 1), it will

ultimately annihilate, and in many cases, producing ob-

servable signals. Some annihilation branching ratios for

certain vector-like quirks were discussed before in [4].

This paper is organized as follows. We will describe our

quirk model in Sec. II. We present the formalism to cal-

culate the decay amplitudes in Sec. III. Then, we present

and discuss our results for two-body quirky meson de-

cay in Secs. V and VI. Much of our results for neutral

quirkonia can be obtained from earlier results on heavy

quarkonia [19], which we have compared extensively, and

thus we relegate the analytic results in our formalism and

notation to Appendix A. We conclude with a discussion

of the comparison between chiral quirkonium decays and

vector-like quirkonium decays in Sec. VII.

II. MODEL AND SETUP

The model we consider is SU(N)ic with two flavors

in the representations given in Table I. This is the gen-

eralization of the model of Ref. [10] to N infracolors.

We assume Λic � mQ, and neglect the infracolor con-

finement contribution to the quirky meson masses. The

Lagrangian that gives mass to the quirks is simply

L = λUQHu
c
+ λdQH

†
d
c
. (1)

Despite the abuse of notation (Q, u
c, d

c), we empha-

size that our quirks are color singlets. After electroweak
symmetry breaking, the quirks acquire masses MU,D ≡
λU,Dv. Writing the electroweak doublet as Q = (u, d),

we can write the quirks in terms of four-component Dirac

Yukawa coupling

Mass 
degenerate

SU(2)ic
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• Meson states

• Matrix element calculation

• Enhancement factors

• Decay branching ratios

Outline
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Two quirk flavors, U and D

Neutral quirkonia

UU
_

DD 
_

SU(N)ic SU(2)L U(1)Y
Q N 2 0
uc

N̄ 1 −1/2
dc N̄ 1 +1/2

TABLE I: Quirk quantum numbers.

spinors U,D

U =

�
u
uc†

�
D =

�
d
dc†

�
(2)

where U,D have electric charge q = ±1/2. The quirky
mesons formed from these objects include

(UŪ), (DD̄) neutral mesons (3)

(UD̄), (DŪ) q = ±1 charged mesons . (4)

There are two interesting regions of parameter space
satisfying the requirement MU,D � Λic. One occurs
when MU � MD or MD � MU , such that there is
one set of heavy neutral mesons, one set of intermediate-
mass electrically charged mesons, and one of set of light
mesons. In this regime, the heavier mesons generically
weak decay to the lightest mesons (microscopically the
heavier quirks are weak decaying into the lighter quirks)
before the quirks themselves have time to annihilate. In
this regime, the relevant annihilation channels consist
solely of the lightest neutral mesons.

The second regime, and the main focus of this paper,
is when MU � MD. When the two flavors of quirks are
very nearly degenerate in mass, all of the mesons given
in Eqs. (3),(4) are stable against weak decay. All of the
quirk pairs within the mesons therefore annihilate well
before the kinematically-suppressed weak decay occurs.
This leads to four distinct “towers” of mesons: two sets
of neutral mesons and two sets of (oppositely) charged
mesons.

The neutral mesons (UŪ) and (DD̄) can mix with each
other through infragluon box diagrams that are superfi-
cially similar to the W -box diagrams within the SM that
lead to mixing among the neutral mesons of QCD. How-
ever, unlike QCD, all of the quirks are heavy, while the
gauge bosons being exchanged in the box diagram are
massless. This small mixing is an interesting effect for
further study. Our meson decay rates are invariant un-
der U ↔ D, and we simply compute (QQ̄) as if it were
an exact (UŪ) or (DD̄) eigenstate. In practice, there
may be either a small admixture between these states,
in which case the mixing angle cancels out in our width
calculations, or otherwise for maximal mixing, we treat
(QQ̄) as the [(UŪ) + (DD̄)]/

√
2 eigenstate.

The infracolor confining potential in the Coulombic ap-
proximation is [10]

V (r) = − ᾱic

r
, (5)

where ᾱic ≡ C2(N)αic = (N2 − 1)/(2N)αic. Analogous
to a hydrogen atom, the Schrödinger wave function can
be solved analytically. The decay widths we calculate
are proportional to the meson wavefunction when the
two constituent quirks overlap. The wavefunction fac-
tors that appear in the decay widths, for S and P states
respectively, are

|RS(0)|2 = 4

�
1

4
ᾱicM

�3

(6)

|R�
P (0)|2 =

1

24

�
1

4
ᾱicM

�5

, (7)

where M is the mass of the meson.

III. MATRIX ELEMENTS OF BOUND STATE

DECAYS

This section reviews the procedures to evaluate the
decay amplitudes of different angular momentum bound
states following the method in [20]. We work in the non-
relativistic limit, where the relative momentum of the
constituents, q � M , where M is the mass of the bound
state. We also ignore the contribution to the meson mass
from the binding potential, i.e. M = 2mQ, with mQ

being the mass of the individual quirks.

Calculations of the matrix element involving an incom-
ing bound state and an outgoing free state, �X|iT |B�,
are needed to evaluate different bound state decay rates.
This is most conveniently done by writing the bound
state as a superposition of free fermion states with spins
(s1, s2) and momenta (p1, p2):

|B� = |2s+1lj� =
�

MSz

�lmssz|jjz�|lmssz�

=

�
2

M

�
d3q

(2π)3
ψlm(q)

��

msz

�lmssz|jjz�
�
×

��

s1s2

�s1,
1

2
, s2,

1

2
|ssz�

�
|s1p1s2p2�, (8)

where ψ is the Schroedinger wavefunction of the bound
state. In its rest frame, p1 = Q/2+ q, and p2 = Q/2− q,
where Q is the 4-momentum of the meson, and q is
the relative 4-momentum of quirks. Then, the quan-
tity <X|iT |s1p1s2p2>= iv̄s2(p2)Mus1(p1) is the usual
fermion-antifermion annihilation matrix element into the
outgoing state f . Expanding the above to the lowest
non-vanishing order in q, we found the following decay
amplitudes for S and P states,

2

Charged quirkonia

UD
_

DU 
_

Lowest lying angular 
momentum states 1S0 

3S1 
1P1 
3P0
3P1
3P2

0-+ 
1-- 
1+- 
0++

1++

2++

2s+1lj JPC

l = 0 

l = 1 

SU(2)ic
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 Decompose |B〉 = |2s+1lj〉 into |lmssz〉

Decay Matrix Element

iM = 〈X X|O|B〉 B

X

X

 Then |lmssz〉 into |p1 p2;s1 s2〉

B. Guberina, J. H. Kuhn, R. D. Peccei and R. Ruckl,
Nucl. Phys. B 174, 317 (1980).

iM ~ 〈X X|O|p1 p2;s1 s2〉

X

X

p1s1

p2s2

f f →XX matrix 
element!

_
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Yukawa and Longitudinal W/Z enhancements

h

h

yukawa ~ mQ

Absent in vector-like quirks!!

ZL

ZL

Goldstone 
equivalence 

theorem
 mQ >>mZ

φ

φ
yukawa ~ mQ

Q

Q
_

Q

Q
_

Q

Q
_
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Branching Ratios

BR(QQ̄ → f) =
Γ(QQ̄ → f)�
f
Γ(QQ̄ → f)

, (43)

where the sum is over all final states. We presents our

results numerically choosing αic = 0.2 and N = 2.

The charged quirkonium case is particularly simple.

As the system is electrically charged, it cannot decay

into g
�
g
�
. We ignore the binding energy of the system.

Therefore, the branching ratios are independent of α�
s
.

The only unknowns are the masses of the Higgs boson

and the quirkonium. Fig. 1 shows the decay branching

ratios of charged quirkonium states. For all states, only

the WH branching ratio is sensitive to different values of
the Higgs mass. The plots shown for charged quirkonia

here are also applicable to any massive bound states that

only decay via the electroweak SU(2)×U(1) group, with

electric charges Qu = −Qd = 1/2. Note that we only

show the summed width over the massless fermions (2

quark pairs, 3 lepton-neutrino pairs), as the widths of

all massless fermions are the same (see Sec. VD). Also,

we only show the decays for the UD̄ meson. We have

checked that the widths for ŪD decay are the same.

The branching ratios of different bound states are plot-

ted in Fig. 1. For the S states, the WZ partial width

dominates. For P states, radiative transition usually

dominates. For
3
P1, the WH width becomes larger than

the Lα transition width when the meson mass is larger

than � 600 GeV, provided that the meson is heavier than

the threshold.

B. Neutral Quirkonia

The results for neutral quirkonia is more complicated

than their charged counterparts. Not only that there are

more decay channels, but also, in some cases, the mesons

can decay into two quirky glueballs, φ�φ�
. Due to the non-

perturbativity nature of the glueball channel, we do not

attempt to calculate its decay width. Instead we present

our results in terms of the width ratio

WR(QQ̄ → f) =
Γ(QQ̄ → f)�

f �=φ�φ� Γ(QQ̄ → f)
, (44)

Also, for reasons of clarity, we do not present the

plots for the branching ratios when the Higgs mass devi-

ates from 125 GeV. Unless the final states involve Higgs

bosons, a larger Higgs boson mass would only push the

corresponding thresholds towards higher meson masses,

leaving the other branching ratios mostly unchanged as

in the case of charged quirkonia. However, there is a qual-

itative change in the branching ratios for the
3
P0 state

when the Higgs mass is sufficiently large, which will be

discussed below.

1. 1S0 and 3S1

The branching ratios of the S states are shown in

Figs. 2a-2b. Decay into glueballs can dominate the

branching ratio. The next dominant contributions are

the double transverse WW and ZZ channels.

The results for the
3
S1 state can be discussed more

precisely because the 2-glueball channel is absent (see

Sec. IVA). For moderate values of M , the double lon-

gitudinal WW mode dominates. Because of Bose sym-

metry, the two Z’s cannot be longitudinal simultaneously

and the ZZ mode is suppressed.

C. 1P1

The width ratios are shown in Fig. 2e is dominated

by the Lα transition throughout the sub-TeV range. All

other widths contain a single enhancement factor, from

either the longitudinal mode or the quirky Yukawa.

D. 3P0

The
3
P0 state can decay into two glueballs. However,

the branching ratios have a weak dependence on the glue-

ball channel because some other rates can be of the same

order of magnitude as the glueball width. This can be

seen in Fig. 2c, the branching ratios without glueball

channel (dashed lines) remains largely unchanged.

The branching ratios exhibit an interesting feature

when the Higgs mass is larger than 2mW , 2mZ and 2Mt,

where Mt is the top mass. The decay channels WW ,

ZZ, and tt̄ involves an s-channel Higgs boson exchange.

When the meson mass is near the Higgs mass M ∼ MH ,

the widths are enhanced by the s-channel Higgs reso-

nance. This can be seen in Fig. 2d. There, the WW

and ZZ widths has a resonance at M = MH = 250 GeV

when the s-channel Higgs boson is on-shell. The tt̄ width

does not exhibit this behavior because at 250 GeV, the

decay into two top quarks from a single Higgs boson is

forbidden by kinematics.

E. 3P1

The branching ratios for the
3
P1 state are shown in

Fig. 2f. The ZH channel are doubly enhanced and is

dominant for M � 700 GeV.

F. 3P2

Same as the
3
P0 state, the glueball channel and the ra-

diative transition width dominates the branching ratios.

As these two are of the same magnitude, the branching

ratios are not drastically affected by the magnitude of the

7

For neutral quirkonia, decays into infra-glueballs is 
ΛIC dependent, calculate width ratios instead for 

plots

αIC = 0.2

ΛIC ~ O(1 GeV)
Kinemetically suppresses IC 

radiative relaxation from P to 
S states

IC is perturbative, Coulomb 
approx. to wavefunction

See our paper for a detailed discussion on how 
these parameters affect our results.

Parameters
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Plots UD
_

UD 
_

Electrically Charged! No glueballs!

mH  = 125, 250 GeV αIC = 0.2
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FIG. 1: Decay branching ratio of quirkonia in different JPC
states. Solid lines are with Higgs mass MH = 125 GeV,

dashed lines with MH = 250 GeV.

VI. COMPARISON TO VECTOR-LIKE

QUIRKONIA

Annihilation rates for the case of vector-like quirks in

certain other representations has been calculated in [4,

13]. There is not a general rule that relates the decay

rates of vector-like quirks to chiral quirks. But in certain

circumstances one can be obtained from the other, and

vice versa. In this section, we will discuss differences and
similarities of vector-like and chiral quirk decay rates,

and give examples in cases where the decay rates are

related.

We wish to compare our results for chiral quirks to a

related theory with vector-like quirks. The vector-like

theory we consider consists of the doublet Q given before

in Table I, but now replacing

�
uc
(N,1,−1/2)

dc(N,1,+1/2)

�
−→ Q�

(N,2, 0) . (21)

Yukawa couplings, Eq.(1), are not present, while we can
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FIG. 1: Decay branching ratio of quirkonia in different JPC
states. Solid lines are with Higgs mass MH = 125 GeV,

dashed lines with MH = 250 GeV.
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FIG. 2: Decay width ratios of quirkonia in different JPC
states. For Figs. (a),(b),(e),(f),(g), solid lines correspond to

a Higgs mass MH = 125 GeV, while dashed lines correspond to MH = 250 GeV. In many instances, there is no

difference between the width ratios for different Higgs masses, and thus the solid lines overlap the invisible dashed

lines. For Figs. (c),(d), we have presented the choices MH = 125 GeV and MH = 250 GeV separately due to the

s-channel pole structure visible in Fig. (d).
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FIG. 2: Decay width ratios of quirkonia in different JPC
states. For Figs. (a),(b),(e),(f),(g), solid lines correspond to

a Higgs mass MH = 125 GeV, while dashed lines correspond to MH = 250 GeV. In many instances, there is no

difference between the width ratios for different Higgs masses, and thus the solid lines overlap the invisible dashed

lines. For Figs. (c),(d), we have presented the choices MH = 125 GeV and MH = 250 GeV separately due to the

s-channel pole structure visible in Fig. (d).
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FIG. 2: Decay width ratios of quirkonia in different JPC
states. For Figs. (a),(b),(e),(f),(g), solid lines correspond to

a Higgs mass MH = 125 GeV, while dashed lines correspond to MH = 250 GeV. In many instances, there is no

difference between the width ratios for different Higgs masses, and thus the solid lines overlap the invisible dashed

lines. For Figs. (c),(d), we have presented the choices MH = 125 GeV and MH = 250 GeV separately due to the

s-channel pole structure visible in Fig. (d).
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Conclusion and outlook

• It is necessary to consider P states for chiral 
quirks for mQ > 500 GeV.

• Dominant modes are mostly combinations of 
W/Z and H, when kinematically allowed.

• 8 lepton(!!!!) signal from HH→ ZZZZ 
→llllllll for heavier Higgs masses
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Which decay channels are enhanced?

Look at JPC of final states!

e.g.  Zγ
ZL 0-+

ZT 1--

γ 1--

ZL

γ

0-+

1--

JPC = 1+-

Q

Q
_
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Works for ZT too!

ZT

γ

1--

1--

JPC = 0++ 1++ 2++
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FIG. 3: Decay width ratios of quirkonia with vector-like masses in different JPC
states. Solid lines correspond to a

Higgs mass MH = 125 GeV, while dashed lines correspond to MH = 250 GeV. In many instances, there is no

difference between the width ratios for different Higgs masses, and thus the solid lines overlap the invisible dashed

lines.

circumstances one can be obtained from the other, and

vice versa. In this section, we will discuss differences and
similarities of vector-like and chiral quirk decay rates,

and give examples in cases where the decay rates are

related.

We wish to compare our results for chiral quirks to a

related theory with vector-like quirks. The vector-like

theory we consider consists of the doublet Q given before

in Table I, but now replacing

�
uc
(N,1,−1/2)

dc(N,1,+1/2)

�
−→ Q�

(N,2, 0) . (45)

Yukawa couplings, Eq.(1), are not present, while we can

now write the vector-like mass MQQ�
where M = MU =

MD. There are several differences that lead to qualita-

tively different decay widths.

10

Vector-like quirkonium decays
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Vector-like quirkonium decays
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FIG. 4: Same as 3 but for charged quirkonia. Only the two JPC states shown here have nontrivial branching ratios.
The state 3S1 cannot decay through two-body decays. The 3P0,1,3 states can only decay radiatively into S states.

First, the coupling of electroweak gauge bosons to left-
and right-handed quirks are the same – the quirk-W/Z
coupling is a purely vector interaction, and processes
that proceed through the axial vector coupling in the
chiral case are absent for vector-like quirks. As an ex-
ample, consider the decay rate Γ(3S1 → ff̄), for neu-
tral and charged quirkonia. The only diagrams are the
s-channel γ/Z or W . In the neutral case, the only differ-
ence that separates vector-like and chiral is the different
axial-vector and vector coupling of the Z. Therefore,
the expressions for vector-like [4] and chiral [19] are the
same. For the charged case, the axial-vector and vector
couplings are not explicitly written in [4], but their rate is
4 times larger than the chiral case in [19]. This is because
the s-channel W couples to both left and right handed
quirks in the vector-like case, whereas in the chiral case
they only couple to left handed quirks. Therefore, the
decay rate into a fermion-antifermion pair for a charged
3S1 is four times larger than its chiral counterpart.

Second, the quirks do not couple to the Higgs and
the corresponding Goldstone bosons (through the lon-
gitudinally polarized electroweak gauge bosons). Virtual
Goldstone bosons can only appear in the s-channel, and
since the Goldstone bosons are pseudoscalars, they only
contribute to the 1S0 decay rates. Vector-like quirks,
by contrast, do not have couplings to the Higgs or the
Goldstone bosons. In addition, Goldstone bosons can
appear in the final state (appearing as longitidually po-
larized electroweak gauge bosons). This leads to quali-
tatively different decay rates into gauge bosons for all of
the bound states.

For completeness, we present the width and branching
ratios of vector-like quirkonia in Fig. 3 for neutral quirko-
nia and Fig. 4 for charged. There are striking differences
between the chiral and vector-like cases. The most promi-
nent feature in the vector-like case is that all decay widths
have the same asymptotic behavior at large quirkonium

mass - there are no longitudinal enhancements of W/Z
anywhere. This is expected, as the longitudinal W/Z
asymptotes to the respective Goldstone bosons, which do
not couple to the vector-like quirks in u- and t-channel
quirk-exchange diagrams. Also, the trilinear gauge boson
coupling appearing in s-channel gauge boson exchange
arises from the electroweak gauge structure of SU(2)L
and has no relation to the electroweak breaking mecha-
nism. Therefore, one would not expect any enhancements
in the decay widths of vector-like quirkonia. Without lon-
gitudinal enhancements, the Lyman-α transition domi-
nates over all P -state decays for all quirkonium masses.
Whereas in the chiral case, decay channels that receives
longitudinal enhancements can dominate the Lyman-α
transition at large quirkonium masses. The most inter-
esting decay channel is 3P0 decay into two Higgs bosons,
which begins to become the dominant decay channel for
quirkonium masses � 500 GeV. If chiral quirks are col-
ored, quirkonia at low masses are expected to decay via
QCD couplings, i.e. into quarks and gluons. However,
neither of these can be longitudinally enhanced. There-
fore, at sufficiently high quirkonium masses, the 3P1 state
would predominantly decay into a di-Higgs boson final
state. This is a striking signal at the LHC!
In the low quirkonium mass regime, the overall behav-

ior of both vector-like and chiral quirkonia are similar: P -
states predominantly decay via the Lyman-α transition
and 3S1 into qq̄. It is interesting to note that for 1S0, γZ
dominates the vector-like quirkonium decay, whereas γγ
is dominant for chiral quirkonia. This is because the pri-
mordial electroweak gauge boson Wµ

3 couples not just to
the left-handed vector-like quirk, but to the right handed
one also! A rough estimate indicates that this gives a fac-
tor of four increase in the γZ rate for the vector-like case.
Indeed, the isospin contribution to the vector coupling of
the Z to the quirks for the vector-like case is twice as
much as that for chiral quirks.

11
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SU(N)ic SU(2)L U(1)Y
Q N 2 0
uc

N̄ 1 −1/2
dc N̄ 1 +1/2

TABLE I: Quirk quantum numbers.

spinors U,D

U =

�
u
uc†

�
D =

�
d
dc†

�
(2)

where U,D have electric charge q = ±1/2. The quirky
mesons formed from these objects include

(UŪ), (DD̄) neutral mesons (3)

(UD̄), (DŪ) q = ±1 charged mesons . (4)

There are two interesting regions of parameter space
satisfying the requirement MU,D � Λic. One occurs
when MU � MD or MD � MU , such that there is
one set of heavy neutral mesons, one set of intermediate-
mass electrically charged mesons, and one of set of light
mesons. In this regime, the heavier mesons generically
weak decay to the lightest mesons (microscopically the
heavier quirks are weak decaying into the lighter quirks)
before the quirks themselves have time to annihilate. In
this regime, the relevant annihilation channels consist
solely of the lightest neutral mesons.

The second regime, and the main focus of this paper,
is when MU � MD. When the two flavors of quirks are
very nearly degenerate in mass, all of the mesons given
in Eqs. (3),(4) are stable against weak decay. All of the
quirk pairs within the mesons therefore annihilate well
before the kinematically-suppressed weak decay occurs.
This leads to four distinct “towers” of mesons: two sets
of neutral mesons and two sets of (oppositely) charged
mesons.

The neutral mesons (UŪ) and (DD̄) can mix with each
other through infragluon box diagrams that are superfi-
cially similar to the W -box diagrams within the SM that
lead to mixing among the neutral mesons of QCD. How-
ever, unlike QCD, all of the quirks are heavy, while the
gauge bosons being exchanged in the box diagram are
massless. This small mixing is an interesting effect for
further study. Our meson decay rates are invariant un-
der U ↔ D, and we simply compute (QQ̄) as if it were
an exact (UŪ) or (DD̄) eigenstate. In practice, there
may be either a small admixture between these states,
in which case the mixing angle cancels out in our width
calculations, or otherwise for maximal mixing, we treat
(QQ̄) as the [(UŪ) + (DD̄)]/

√
2 eigenstate.

The infracolor confining potential in the Coulombic ap-
proximation is [10]

V (r) = − ᾱic

r
, (5)

where ᾱic ≡ C2(N)αic = (N2 − 1)/(2N)αic. Analogous
to a hydrogen atom, the Schrödinger wave function can
be solved analytically. The decay widths we calculate
are proportional to the meson wavefunction when the
two constituent quirks overlap. The wavefunction fac-
tors that appear in the decay widths, for S and P states
respectively, are

|RS(0)|2 = 4

�
1

4
ᾱicM

�3

(6)

|R�
P (0)|2 =

1

24

�
1

4
ᾱicM

�5

, (7)

where M is the mass of the meson.

III. MATRIX ELEMENTS OF BOUND STATE

DECAYS

This section reviews the procedures to evaluate the
decay amplitudes of different angular momentum bound
states following the method in [20]. We work in the non-
relativistic limit, where the relative momentum of the
constituents, q � M , where M is the mass of the bound
state. We also ignore the contribution to the meson mass
from the binding potential, i.e. M = 2mQ, with mQ

being the mass of the individual quirks.

Calculations of the matrix element involving an incom-
ing bound state and an outgoing free state, �X|iT |B�,
are needed to evaluate different bound state decay rates.
This is most conveniently done by writing the bound
state as a superposition of free fermion states with spins
(s1, s2) and momenta (p1, p2):

|B� = |2s+1lj� =
�

MSz

�lmssz|jjz�|lmssz�

=

�
2

M

�
d3q

(2π)3
ψlm(q)

��

msz

�lmssz|jjz�
�
×

��

s1s2

�s1,
1

2
, s2,

1

2
|ssz�

�
|s1p1s2p2�, (8)

where ψ is the Schroedinger wavefunction of the bound
state. In its rest frame, p1 = Q/2+ q, and p2 = Q/2− q,
where Q is the 4-momentum of the meson, and q is
the relative 4-momentum of quirks. Then, the quan-
tity <X|iT |s1p1s2p2>= iv̄s2(p2)Mus1(p1) is the usual
fermion-antifermion annihilation matrix element into the
outgoing state f . Expanding the above to the lowest
non-vanishing order in q, we found the following decay
amplitudes for S and P states,
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